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INTRODUCTION 

This white paper provides an in-depth introduction to the topic of NBM 
so that corporate and governmental decision-makers will understand 
its capabilities, requirements, and potential limitations, thus enabling 
them to make informed decisions about the technology’s applicability 
to their particular operational challenges. Much has been written 
about AI in recent years, particularly its ability to identify anomalies 
in the otherwise normal operation of equipment and processes. But 
there remains an air of mystery about the technology, especially 
concerning the ways in which specific alerts and notifications are 
generated and how they should be responded to (if at all). There is, 
in short, a bit of a ‘black box’ aspect to AI and techniques like NBM, 
and it is our goal to provide a peek inside that box.

In addition to providing insight into how NBM works, a further 
objective of this white paper is to identify specific use cases in 
which it delivers tremendous business value. NBM is applicable 
to a wide range of operational fields—in practice, any in which 
‘normal’ operation can be quantified from available data—and we will 
identify several of them. They include everything from maintaining 
the reliability of production assets in manufacturing plants and oil 
and gas facilities to reducing carbon emissions from refineries and 
optimizing the operation and maintenance activities of aviation and 
renewable energy firms.  

Modern industrial equipment routinely costs millions of dollars to 
purchase, maintain, and operate. The goal of any industrial concern 
is not only to employ that equipment to maximize production (and 
hence revenue) but also to manage ongoing expenses by minimizing 
routine or unscheduled maintenance and increasing the useful life 
of these expensive capital assets. Historically, these goals have 
been pursued using condition-based monitoring (CBM) solutions 
or OEM-provided asset management tools incorporating physics-
based models. However, in a world where equipment is increasingly 
reliable and failure data is scarce, traditional approaches are often 
far less effective than the NBM approaches described here. The 
goal of NBM is to facilitate the achievement of these goals, i.e., 
minimizing operational costs while maximizing revenue generation 

and equipment lifetime, in a more proactive and effective manner. 
But before diving into the details of how NBM accomplishes these 
things, it’s worth taking a moment to consider how we have gotten 
to where we are today in the field of NBM-based anomaly detection. 

EVOLUTION OF MAINTENANCE APPROACHES

Normal behavior modeling is an AI-enabled analytical technique that 
can be applied to an entire end-to-end process or one particular 
piece of equipment, such as a hydraulic pump or wind turbine. 
However, long before the term NBM came into existence—since 
the invention of the earliest mechanical devices—equipment and 
process operators have been tasked with keeping them running for 
as long and as continuously as possible. 

In the earliest days, this meant nothing more sophisticated than 
repairing a piece of equipment when something failed (run-to-failure 
approach). If a wheel on your oxcart broke, you either repaired it 
on the spot or you took it to a wheelwright who fixed it for you or 
sold you a new one. This approach is ideal for assets/machines 
that are very cheap to replace and the asset failure will not cause 
catastrophic damage to adjacent assets, endanger human lives, or 
result in significant revenue losses from downtime.

As time and technology progressed, operators got better at identifying 
conditions suggesting that a failure was imminent, and they became 
equally creative at coming up with maintenance actions that could be 
taken in advance to prevent an all-out failure (preventative maintenance 
approach). With a better understanding of how pieces of the machine 
could be expected to degrade over time, experts would set expiration 
dates for critical components and replace them periodically. The 
downside of this approach was that because expiration dates were 
somewhat arbitrary or based on each component’s average expected 
life, perfectly good parts were often replaced, incurring unnecessary 
costs and installation-related downtime.

By the time of the industrial revolution in the late 1800s, with the 
arrival of textile and paper mills, munitions factories, etc., the 
equipment had become quite complex and frequently temperamental 
to operate, meaning that factory bosses had to employ experts 
whose sole purpose was to keep everything running smoothly. The 
expertise required to do this job was often no more complex than 
listening to a machine’s sounds, feeling its vibrations, or staying alert 
to unusual smells. Eventually, though, mechanical gauges arrived 
on the scene and industry had its first sensors, a new capability 
that still plays a critical role to this day. With the ability to monitor 
quantifiable measures like temperature, pressure, and flow rate, 
and to track these measures over time, the possibility emerged 
of understanding what qualified as ‘normal’ behavior for a piece 
of equipment, predicting when something was about to go wrong, 
and doing something about it in advance (predictive maintenance 
approach). 

Fast forward to the middle of the 20th century, and operations 
experts were applying statistical techniques to interpret the growing 
quantities of data they were collecting (often manually) about their 
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systems. Increasingly advanced mathematical analyses were applied 
to operational data, culminating in the 1970s and 1980s with the 
emergence of statistical process control (SPC), a new capability that 
identified upper and lower tolerances for a specific performance 
measure and automatically determined when a tolerance was 
exceeded, often an early indication of an incipient problem. There 
were, though, important limitations of these techniques. First, this 
approach was applied to the time-series data of a single metric, 
e.g., the pressure of a pump, the temperature of a reactor, etc. 
The ability to combine numerous values into a single holistic view 
of system performance was still very much in the future, let alone 
properly triggering anomalies driven by the interplay between 
multiple, interdependent variables (i.e. multivariate). Further, the 
threshold alerts provided by SPC systems were frequently indicative 
of a problem that was already occurring, meaning it was late in the 
game to do anything proactive about it. 

Around this time, condition-based and physics-based performance 
modeling began taking precedence. In the former case, operators 
conducted continuous monitoring of numerous sensor outputs, 
based either on their own prior knowledge of system operations or 
on guidelines provided by original equipment manufacturers (OEMs) 
of these systems. By evaluating equipment performance in real-time, 
operators became aware of problems, though typically with little 
or no advance notice, rendering repairs after-the-fact situations. 

Physics-based models, on the other hand, relied on subject matter 
experts to model and simulate the operation of a system or piece of 
equipment by defining it with a series of mathematical equations. 
These equation sets could do a good job of defining a system’s 
operation under predictable conditions but faced challenges as 
system complexity grew and in the face of dynamic conditions over 
time, particularly exogenous events like weather and age-based 
changes in the operating environment. Especially challenging for 
physics-based models is their tendency to degrade over time due 
to operations, wear and tear of equipment, and other changes that 
cause the equipment to deviate from specifications originally provided 
by the OEM. Keeping up with these changes requires periodic re-
tuning of the models, a difficult and time-consuming task. Despite 
the limitations of these methodologies, many system operators 
today still maintain their equipment using some combination of 
physics- or condition-based maintenance approaches. 

With the turn of the 21st century and the arrival of big data, high-
bandwidth data transmission, and petaflop computing capabilities, 
a new universe of possibility came into being. Operators had 
understood for a long time that a system’s overall performance-–
its ability to do its job—depended not only on the correct values of 
individual performance measures right now but also on the collective 
achievement of many measures working in concert over extended 
time periods. And it is this need for comprehensive monitoring and 
analysis of increasingly complex systems that normal behavior 
modeling satisfies with often unmatched precision.  

Figure 1—Production Output vs Maintenance Approach
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Figure 2—Evolution of System/Equipment Maintenance

NBM ADVANTAGES
Holistic system understanding

There are several direct advantages of NBM, but most significant 
is its ability to continuously monitor and provide proactive alerts 
of impending maintenance problems for a complex system of 
components, basing these alerts not only on the values of individual 
parameters but on a holistic understanding of the system in its 
entirety. This is unique compared with simpler methodologies such 
as univariate statistical process control (SPC) and condition-based 
monitoring (CBM), each of which bases its alert outputs on the value 
of a single variable. In the simplest implementation, for example, 
univariate SPC establishes statistically-determined maximum 
and minimum threshold values for a time-series data stream, 
then provides alerts when one of these thresholds is exceeded for 
a predefined period of time or number of instances. CBM works 
similarly, using threshold values typically provided by the OEM of 
the piece of equipment being monitored. There are numerous flaws 
with both of these approaches to system monitoring, but the primary 
one is failure to recognize the inherently interconnected nature of 
complex systems, both to other components in the system and to 
the external environment. 

Multivariate statistical process control approaches can be employed 
to address some of these limitations, but their cost and difficulty 
of implementation grow quickly with the complexity of the system 
and number of variables in question. A workaround for this is to use 
prior knowledge to keep the number of surveillance variables to a 
minimum, but the tradeoff is a reduction in system visibility and the 
ability to alert on new problems (i.e. unknown unknowns) that have 
rarely or never before been encountered. This carries significant risk 
in today’s industrial environments where complex operations are 
enabled by interconnected systems consisting of an ever-increasing 
mix of sophisticated assets from a wide array of vendors.

Another common approach to system monitoring is physics-based 
modeling, which uses a complex series of mathematical equations 
to describe how a system or component should perform under 
normal circumstances. This approach is implemented by subject 
matter experts (SMEs) who use prior knowledge to implement a 
rules-based model or simulation. Key advantages of these models 
include interpretability and predictive power. However, similar to 
the other approaches cited above, they are challenged by increasing 
system complexity and the computational requirements required 
by large-scale models. The dynamic nature of modern industrial 
environments also poses a problem where models require the 
ability to adapt quickly as operating parameters evolve with time—
no small task for a more rigid rules-based approach. Maintaining 
model performance can be daunting as assets grow older since 
mathematical equations are fixed and do not age. An important 
manifestation of this problem is an increased rate of false positives 
with the passage of time.

NBM, by contrast, evaluates the system in a holistic manner, 
recognizing explicitly that the status values of one element of the 
system can be directly affected not only by the status values of other 
elements of the system and of the external environment but also 
by characteristics such as the age of the system’s components and 
changes in what comprises ‘normal’ for the system. Stated differently, 
what qualifies as normal on the day a system is first turned on may 
bear little resemblance to what qualifies as normal a few months 
or years later. And this is the key difference between NBM and the 
other discussed approaches: traditional physics-based models, 
CBM, and SPC methods work best on day 1 of operations whereas 
data-based approaches like NBM continue to improve with time.

In many ways, considering NBM vs. a physics-based approach as an 
either/or proposition is a false dichotomy. In fact, an NBM approach 
can be complementary to a physics-based tool, augmenting the 
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overall solution in significant ways. In addition, the data utilized by 
NBM is generated from underlying physical processes. Instead of 
relying on SMEs to define the equations that correspond with those 
underlying physical processes to drive physics-based modeling and 
simulation, NBM leverages the power of machine learning to infer 
those rules automatically from the data itself, even as the system 
continues to evolve over time.

Unsupervised learning

Another important advantage of NBM is its ability to detect and provide 
alerts on impending failure modes without having been exposed to 
those failure modes in advance. This raises the notion of so-called 
supervised and unsupervised performance modeling. In supervised 
learning, the system is trained on historical data sets to recognize 
a predefined subset of output conditions explicitly. In the case of 
image recognition, for example, supervised models are frequently 
trained to recognize a specific outcome (say, identification of a cat in 
a photo) by being shown large numbers of images of that outcome, 
i.e., photos containing cats. In such instances, each piece of data 
(each photo) is said to be labeled, i.e., either ‘cat’ or ‘not cat.’ In the 
analogous predictive maintenance scenario, a supervised system 
would learn about the various failure modes of, say, a hydraulic 
pump by being shown in advance all the various ways in which a 
hydraulic pump can fail along with data sets containing labels that 
correspond to these failure modes. The obvious weakness of this 
approach is that it renders the system incapable of identifying and 
alerting on failure modes not foreseen in advance by trainers. And, of 
course, this approach also suffers from the additional requirement 
for someone to take the time to identify and codify all of the failure 
scenarios that will be provided to the system, a challenge made even 
more daunting by the increasing reliability of modern machines, a 
result of which is reduced access to failure data for use in training.

Unsupervised learning, on the other hand, requires none of this. 
The system is fed a large data set from the normal operating 
equipment. Once the model has learned what comprises ‘normal,’ 
it autonomously provides alerts on situations that deviate from that 
state. This approach also continuously revises its understanding of 
‘normal’ for the system, meaning that its knowledge is dynamic, a 
key benefit whose importance will be explored more in subsequent 
sections. 

Data agnosticism

Another important distinction between NBM and other forms of 
system monitoring is the notion of data agnosticism. An NBM model 
is unconcerned with what kind of equipment it is monitoring. Whether 
wind turbine, fuel pump, or nuclear reactor is of no relevance to the 
NBM model. The model evaluates an input data stream, develops 
its understanding of normality, and triggers alerts whenever it 
perceives that normality has been violated. 

Other advantages

Besides the holistic system understanding, unsupervised learning, 
and data agnostics capabilities described, NBM yields additional 
advantages:  

•	 More effective in monitoring (internally or externally) dynamic 
environments.

•	 Provides alerts on anomalies BEFORE failures occur, saving 
money and time.

•	 Strikes an ideal balance between alert fatigue from too many false 
positives and missed problems as well as from too many false 
negatives (i.e., alerts that should have taken place, but did not). 

•	 Adaptable and scalable as system complexity increases since it’s 
relatively straightforward to add new or retrain existing normal 
behavior models as new assets (and their associated sensor 
inputs) are added. 

THE TECHNOLOGY OF NBM

Normal behavior modeling is an automated AI/ML-enabled anomaly 
detection methodology for evaluating and describing the behavior 
of a system or piece of equipment under normal operational and 
environmental conditions. NBM models ingest large volumes of 
quantitative time-series data (temperature, pressure, flow rate, 
etc.) from multiple sensors, both initially for training purposes 
and continually thereafter for ongoing monitoring and periodic 
retraining of the system. Once trained to understand the quantitative 
characteristics that define ‘normal’ for the system in question, the 
model continues to evaluate the incoming sensor-provided data 
stream and generates alerts whenever an out-of-normal condition 
is detected. Managers and technicians can then use these alerts to 
undertake maintenance and repairs of the system more proactively 
than doing so only upon system failure, thus saving time and money 
and improving the overall productivity and safety of the system, the 
facility in which the system operates, and the workers who interact 
with it.

NBM models are used in a wide variety of capacities, but their 
applicability falls primarily into the predictive maintenance field. 
They are used to make more effective and efficient the monitoring 
and maintenance of complex physical or virtual systems, comprising 
either a single complex device (e.g., a jet turbine), an interconnected 
series of physical devices (e.g., the equipment on an oil platform or 
refinery), or a complex process (e.g., sales of a product on an online 
platform). To employ NBM modeling, the only requirements are a 
continuously operating system comprised of multiple components, 
status and performance data from sensors attached to those 
components, and one or more quantifiable outputs from the system.  

The process described in the following sections is summarized in 
Figure 3, including all steps from initial data ingestion/cleaning/
filtering through feature extraction, weighting, risk scoring, and 
alert generation. 
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Figure 3—NBM End-to-End Process

Data ingestion, cleaning, and filtering

As with any data-driven analytical exercise, the quality of data 
provided to the NBM model will determine the quality of output 
results (in this case, the veracity of alerts). This includes standard 
data-management best practices, such as handling spurious or 
out-of-range data or entirely missing data, the latter of which can 
be dealt with by interpolation or inference based on other related 
data points. The autoencoder architecture described in the following 
sections is extremely robust with respect to handling noisy data, 
enabling it to perform well even when presented with less-than-
perfect sensor inputs. 

It is a useful first step in any NBM development process to decide on 
the frequency and granularity of the data that will be used. While it 
will generally be true that more is better, there will be points beyond 
which processing times become cumbersome and the value of even 
more data will begin to result in diminishing returns. Thus, because 
there exist sensors that provide output data every second and others 
that provide a reading once each hour, careful consideration should 
be given to the input data frequency required versus the timeliness 
of outputs that will be needed. A commonly employed test of these 
requirements is to create and run an initial NBM model on a large 
historical data set during which known failures occurred, to gauge the 
extent to which the model can predict those failures post facto. This 
is not only an excellent tuning exercise prior to model development, 
it also goes a long way toward creating organizational comfort with 
the entire modeling process.

Deep learning and neural networks

Artificial neural networks (ANNs) are a popular form of machine 
learning loosely inspired by the organizational structure of biolog-
ical neural networks found in animal brains. In this structure, an 
input and output layer and one or more internal “hidden” layers 
are interconnected sequentially. This organizational arrangement, 
coupled with the particular activation function implemented by each 
node, gives neural networks the power to learn with high accuracy, 
even from highly dimensional input data sets.

As the depth of inner node layers increases, so does its learning 
power, given sufficient training data. This is, in fact, where the notion 
of deep learning comes from, i.e., when multiple hidden layers are 
implemented between the input and output layers. Deep learning 
models have tremendous learning capacity and deliver outstanding 
performance for many tasks where the underlying data set is com-
posed of hierarchically related elements and/or time-series data. 
During training, the hidden layers learn the important features of 
the input data set automatically, which is of great benefit in situ-
ations where costly manual feature engineering would otherwise 
first need to be applied. 

Normal behavior modeling is an anomaly detection methodology 
frequently implemented with a form of deep learning architecture 
known as an autoencoder1. An autoencoder consists of two stages–
an encoder and a decoder, each comprised of one or more neural 
network layers (Figure 4). In industrial settings, the encoder’s input 
layer might ingest a continuous stream of quantitative data from 
equipment sensors (temperature, pressure, etc., shown as Xn in 
the figure) over time—for example, once each minute. This data 
is then fed to one or more ‘hidden’ layers where it is compressed, 
i.e., reduced in dimensionality, by virtue of using fewer nodes than 
in the input or output layers in what is commonly referred to as 
the bottleneck layer. In this way, the input data is encoded into an 
efficient, lower-dimensional representation known as the latent 
space representation. 

In the decoder stage, the process is reversed and the latent space 
representation is decompressed and expanded back to the original 
input dimension at the output layer. All of this is achieved during 
the standard training phase used in deep learning where the neural 
network parameters (i.e. weights and bias terms) are determined 
through an iterative process known as backpropagation in which the 
model’s parameters are continuously tuned until some predefined 
objective function has been sufficiently optimized. The objective 
is to reconstruct the original input data at the output layer of the 
autoencoder with as little difference as possible. 

1https://patents.justia.com/patent/11227236
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In practice, achieving this outcome typically requires many thou-
sands of iterations, with the weights2 tweaked slightly with each 
iteration in response to measured differences between the input 
and resulting output layers. When the outputs (X’n in the diagram) 
have finally achieved parity (or as close to it as possible) with the 
original inputs (Xn), the model is said to have ‘learned’ the normal 
state necessary to deliver subsequent actionable alerts. 

The important aspect of this learning methodology is the reduced 
dimension of the hidden layers versus the input and output layers. 
This is required in order for the model to learn. If the width (i.e. 
number of nodes) of the hidden layer was equal to the dimension 
of the input layer, then the model could simply “cheat” by applying 
a weight of 1 to every input and instantly recreating the desired 
output without having learned anything at all about the system or 
its operation. 

Once the model parameters have converged during training, the NBM 
model is ready to evaluate new input data and draw conclusions about 
its adherence to the model’s learned definition of normal behavior. 
This is done by using the same objective function employed during 
training. The reconstruction error is calculated from the output 
layer as new data is fed into the autoencoder’s inputs. The greater 
the value of the reconstruction error, the more likely the current 
input data is indicative of an anomalous condition in the system. 

Another way to understand the relationship between all variables 
in a data set is to imagine a vector (Figure 5) representing a point 
in multidimensional mathematical space that coincides with the 
weighted combination of all input data elements. Each such vector is 
a critical element that enables the model to draw its out-of-normal 
conclusions from the full set of iterating variables rather than from 
a single variable. In this example, there are only three variables 

shown, but, in fact, each of these vectors contains as many unique 
dimensions as there are variables in the input data stream, typically 
dozens, hundreds, or even thousands.

As these vectors are generated, their results can be visualized us-
ing a heat map as shown in Figure 6. The heat map aggregates the 
degree to which each feature is in or out of tolerance over a period 
of time (the horizontal axis), with red areas indicating the most 
out-of-tolerance and green the most in-tolerance. By reordering 
the feature rows of the heat map to show those with the greatest 
amount of red (out-of-tolerance) at the top, a snapshot is displayed 
of the system’s status over the selected period of time, providing an 
intuitive explanation of the most likely drivers of an anomalous event.

2 Weight being a coefficient between 0 and 1 by which each node’s input value 
(Xn) is multiplied.
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Figure 6—NBM Feature Heat Map

Evaluation, scoring, and alert generation

One of the key benefits of the NBM approach is that it can reduce 
many thousands of individual time-series data points to a single, 
intuitive metric that can be acted upon by SMEs and non-technical 
personnel. This single point is known as a risk (or anomaly) score. 
The risk score is the statistical summarization of the extent to 
which each feature vector value deviates from the mean value for 
that feature (Figure 7).

Determining whether or not maintenance action should be taken 
based on the anomaly score is a function of how sensitive we want 
the output to be. In the most basic version of this technique, we 
would assign a threshold value for each anomaly score and declare 
an alert anytime this value is reached. In reality, this approach is 
likely to make the model overly sensitive and generate more false 
positives (i.e., alerts to conditions that are, in fact, within tolerance 
and should not be acted upon) than we want. 

Instead, it makes sense to decide in advance upon a statistical band 
of upper and lower bounds derived from experientially determined 
standard deviations. Thus, it is only when the anomaly score exceeds 
the upper bound of the band that we will declare the system to be 
out-of-normal and generate an alert. Limiting alert generation in 
this way can be achieved using a sequential probability ratio test 
(SPRT) or similar customized approach suitable to a given application 
domain based on prior institutional knowledge.

RETRAINING AND EVOLVING NORMALS

NBM systems, like all systems, evolve over time. And this evolution 
takes many forms. Equipment ages, maintenance occurs, tolerances 
change, desired outputs change, regulations change, and externalities 
like availability of time, people, and money change. As a result, our 
sense of what is ‘normal’ for our complex system is highly likely to 
change and our modeling approach needs the flexibility to adapt as 
circumstances evolve. Fortunately, NBM is uniquely well-positioned 
to respond to these inexorable changes, far more so than the CBM, 
SPC, and other methodologies discussed earlier. 

The most straightforward way in which NBM enables this flexibility 
is by simply retraining it from time to time (monthly is a common 
choice) to reflect the latest reality. This process occurs in the same 
manner as initial training, except that results will be improved in 
subsequent iterations due to the availability of larger and more 
comprehensive data sets. In the parlance of our original description, 
it’s important to build into the ongoing operation of the NBM process 
the maximizing of the congruence between the model’s inputs and 
outputs. 

EXPLAINABILITY

There is another extremely important element to consider when 
making decisions about NBM implementation, and that is explainability. 
One of AI’s most persistent criticisms is that users are asked to 
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Figure 7—Risk Score and Alert Creation
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blindly trust the system’s outputs without understanding how 
they were derived. Tools like the heatmap depicted in Figure 6 are 
important enhancements to the base NBM approach in that they 
can help identify which specific components are deviating from their 
normal behavior and provide users with a deeper understanding of 
where a failure is likely to occur in a complex system. With such 
enhancements, NBM will not only provide advance warning that a 
system component is verging on failure but also provide insight into 
the source of the anomaly.

HUMAN-IN-THE-LOOP AND KNOWLEDGE MANAGEMENT

Many industrial organizations rely heavily on the expertise of key 
personnel and experienced subject matter experts to keep their 
operations running smoothly, especially in areas involving upkeep 
and maintenance of their most critical assets. However, in recent 
years, companies have faced the increased risk of labor and skill 
shortages driven by demographic shifts and the lingering impact of 
the global pandemic. Advanced technologies like artificial intelligence 
and machine learning provide new opportunities for organizations 
to elevate their best workers, helping to institutionalize and embed 
their knowledge into solutions like NBM-based predictive analytics 
in ways that augment specialists, enhance the rest of the workforce, 
and increase productivity.

For example, a traditional maintenance team often endures a constant 
stream of threshold-based alarms from their sensors and relies on 
the experience of a handful of seasoned operators to filter out the real 
alerts from the noise. These same SMEs play key roles in making NBM 
deployment and utilization successful, including identifying failure 
modes, establishing functional alert thresholds, and determining 
when model retraining should be undertaken. The most effective 
NBM solutions employ such human-in-the-loop learning techniques 
at their core, leveraging the domain knowledge of SMEs to improve 
underlying model performance through an intentional feedback loop 
between humans and machines. Because their knowledge is now 
integrated into the deployed NBM solution—freeing them from the 
tedious aspects of predictive maintenance activities now handled 
by the automated solution—they can employ their skills on higher-
value activities instead.  

There is no replacement for specialized domain expertise, regardless 
of how much automation a company implements. NBM is, though, 
a uniquely valuable force multiplier of the skill sets of experienced 
SMEs, augmenting the workforce and increasing operational 
productivity at a time when labor shortages and skill gaps pose 
increasing risks to organizations. 

USE CASES

As previously described, the principal purpose of NBM is to define 
the normal state of a complex system and to then proactively 
identify and flag instances in which that system is operating outside 
of normal. Ideally, such identification and flagging will occur with 
sufficient advance warning to allow maintenance or repair actions 
to take place that will forestall an outright system failure and all of 
the revenue loss, repair costs, and safety compromises that typically 
come with such failures.

There are many examples of complex systems to which NBM 
techniques can be applied, some of which are physical and others 
more process-oriented.

•	 Production equipment on oil platforms—Failure can mean 
millions in lost revenue due to deferred production, safety 
risks, and environmental catastrophes. By modeling equipment 
temperatures, pressures, and rotation and flow rates, incipient 
problems can be identified early, saving upstream operators 
millions of dollars and significant regulatory exposure.

•	 Manufacturing plants—Out-of-normal operations in manufacturing 
plants can result in safety hazards, environmental violations, 
and inferior quality in the products being produced. Proactively 
identifying process and equipment problems help ensure profitable 
operations in frequently low-margin businesses.  

•	 Commercial and military aviation—Jet engines and other complex 
airborne hardware are routinely subject to enormous operational 
stresses. Small problems can quickly cascade into expensive 
and dangerous situations, risking lives and the loss of immense 
capital investments.

•	 Electric power generation, transmission, and distribution—
Electric power generation equipment, whether renewable or 
traditional fossil-fuel-powered, requires extremely high-reliability 
performance, making these assets ideal candidates for NBM-
based predictive maintenance methodologies.

•	 Financial investments—The normal ebb and flow of global 
equity and debt markets occasionally undergo upsets that can 
produce short-lived investment opportunities or risks that must 
be quickly and actively mitigated. In an industry characterized 
by millisecond transaction speeds, knowing about these threats 
and opportunities before the competition can be the difference 
between success and failure.  

SUMMARY AND CONCLUSIONS

Normal behavior modeling is the state of the art in predictive 
maintenance of complex systems and equipment. It simultaneously 
automates complicated performance data monitoring and analysis 
processes while minimizing alert fatigue from false positives. It 
facilitates the continuing adaptation of the monitoring system to the 
evolving notions of what constitutes the ‘normal’ state of the system 
as it ages. And it enables alerts to be based on the complex and 
frequently nonobvious interactions between the many components 
and parameters within (and sometimes outside of) the system. 

Many factors go into successfully developing and implementing an 
NBM system. These have been discussed throughout this paper, 
and include:

•	 Sensor data availability/quality/frequency/features
•	 Understanding of how ‘normal’ evolves with equipment age and 

changing operational practices
•	 Alert explainability and knowledge management
•	 Human-in-the-loop learning and workforce augmentation

The concepts described in this paper are intended to give the reader 
an initial understanding of NBM’s capabilities, benefits, and the 
steps required to make it work in an organization that operates and 
maintains complex systems. 
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APPENDIX—GLOSSARY OF TERMS

Autoencoder (aka neural network encoder)—A neural network that 
is trained to attempt to copy its input to its output by repeatedly 
assigning weights in the hidden/latent layer to the inputs and then 
recursively adjusting those weights until the desired output has 
been achieved. 

Bottleneck—The hidden/latent layer of a neural network that 
creates in the output layer a representation of the initial input data. 
The bottleneck layer typically contains fewer nodes than the input 
or output layers, facilitating the reduction of dimensionality in the 
input data stream. 

Condition-based monitoring—A predictive maintenance technique 
that continuously monitors the condition of equipment or assets 
using sensor-derived data that relates information about real-time 
conditions.

Decoder—The layer of an autoencoder that delivers the output 
data set after applying the weights developed in the bottleneck or 
hidden/latent layer. 

Dimensionality reduction—Technique employed by an autoencoder’s 
hidden/latent layer to reduce the number of large/complex input 
features of input data. This technique can better fit the model with 
less risk of overfitting. 

Encoder—The layer of an autoencoder that ingests the input data 
set from system sensors prior to applying the weights developed 
in the bottleneck or hidden/latent layer. 

Feature—A unique, nonredundant, and measurable (usually numeric, 
but not necessarily) property of a system that is derived from a set 
of weighted input data. Note: a feature can be either a unique/native 
characteristic of the raw input data or the result of combining two 
or more raw data inputs.

Feature extraction—The process by which unique features are 
extracted from an initial data set, thus reducing the overall amount 
of data while providing nonredundant data elements. The process 
is important to reduce the amount of storage and processing 
required for subsequent analysis and also to reduce the likelihood 
of overfitting the model. 

Feature vector—Multidimensional mathematical representation of 
a specific output feature that has had model weights applied to it.

Hidden/latent layer—The central layer of an encoder in which weights 
are repeatedly applied to input data in an effort to force the output 
set to match the input data set. 

Physics-based modeling—Method of modeling/simulating the 
operation of a system or piece of equipment by defining all of its 
characteristics using a series of mathematical equations. 

Principal component analysis—An unsupervised statistical learning 
technique in which underlying patterns are identified in a data set 
so that it can be expressed in terms of another data set with fewer 
variables and with reduced dimensionality and complexity but without 
significant loss of information. 

Risk or anomaly Score—Numerical value derived by aggregating 
all feature output values from the NBM model through statistical 
analysis. The risk score determines whether or not action is required 
on the part of maintenance staff. 

Tag—The specific name assigned to a unique data element in an 
input data set to a neural network (e.g., Temp_Pump 37A).

Normal behavior model—An AI-enabled modeling technique in 
which machine learning is applied to a time series of operational 
data to identify the characteristics of the data in normal operation.  

Supervised learning—NBM training methodology in which known 
failure modes are included in initial data sets along with the data 
that preceded these failures. 

Unsupervised learning—NBM training methodology in which only 
normal operating data are included in the initial training data set. 
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